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Abstract Efficient methodologies to conduct simultaneous
dynamics of electrons and nuclei are discussed. Particularly,
attention is directed to a recent development that combines
quantum dynamics with ab initio molecular dynamics. The
two components of the methodology, namely, quantum
dynamics and ab initio molecular dynamics, are harnessed to-
gether using a time-dependent self-consistent field-like cou-
pling procedure. An approach to conduct quantum dynamics
using an accurate banded, sparse and Toeplitz representation
for the discrete free propagator is highlighted with suitable
review of other related approaches. One notable feature of
the method is that all important quantum dynamical effects
including zero-point effects, tunneling as well as over-barrier
reflections are accurately treated. Computational methodol-
ogies for improved efficiency of the quantum dynamics are
also discussed. There exists a number of ways to carry out
simultaneous ab initio molecular dynamics (such as Born–
Oppenheimer dynamics and extended Lagrangian dynam-
ics, Car–Parrinello dynamics being a prime example of the
latter); our prime focus remains on atom-centered density-
matrix propagation and Born–Oppenheimer dynamics. The
electronic degrees of freedom are handled at accurate levels
of density functional theory, using hybrid or gradient cor-
rected approximations. Benchmark calculations are provided
for a prototypical proton transfer system. Future generaliza-
tions and goals are discussed.

1 Introduction

The time-dependent Schrödinger equation is the starting point
for many computational methodologies in gas-phase [1] and
condensed-phase quantum dynamics [2]. Commonly, the
Born–Oppenheimer approximation is invoked which allows
propagation of nuclei, quantum-mechanically [1,3–26],
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classically [27–31], or semi-classically [32–43] on fitted elec-
tronic surfaces or on “on-the-fly” [27–32,44–46] approxima-
tions to the same. For cases where fitted electronic surfaces
are used, the required number of quantum chemical calcula-
tions to obtain a faithful representation of the surface can be
very large depending upon the size of the system. It is in this
regard that “on-the-fly” approaches to dynamics of nuclei
and electrons [27–32,44–46] have recently become popu-
lar, leading to the sub-field of ab initio molecular dynamics
(AIMD). The potential energy surfaces in both approaches
may either be obtained from highly accurate, but demanding,
electronic structure calculations or from parameterizations of
the associated surfaces.

It should be noted that “on-the-fly” approaches to elec-
tron-nuclear dynamics are nearly as old as quantum mechan-
ics itself (see for example Refs. [47,48] for a description
of the Dirac–Frenkel time-dependent variational principle,
which constitutes a formally exact “on-the-fly” dynamics
scheme). More recently, many novel approaches to “on-the-
fly” AIMD have been developed. Here, an approximation
to the electronic wavefunction is propagated along with the
nuclear degrees of freedom to simulate dynamics on the
Born–Oppenheimer surface. If the nuclei are treated clas-
sically [29–31,44,45,49] then the forces on the nuclei are
determined from the electronic structure. Perhaps all of
these approaches can be broadly categorized into: (a) Born–
Oppenheimer dynamics (BOMD) approaches, where the elec-
tronic structure is converged self-consistently, or (b) extended
Lagrangian approaches [50,51], where an approximation to
the electronic structure is propagated through an adjustment
of the relative time scales of electrons and nuclei. The Car–
Parrinello method [29,45,49] is a well-known example of the
latter approach. The AIMD approaches when combined with
full quantum or semiclassical dynamics schemes, has the po-
tential to treat large problems accurately with the complete
machinery of quantum dynamics. Several steps have been
taken in this direction [32,52–55].

Our group [55–57] has recently developed a new ap-
proach that attempts to overcome some bottlenecks in this
area. Our method combines full quantum-wave-packet



Ab initio dynamics with wave-packets and density matrices 327

dynamics treatment of the time-dependent Schrödinger equa-
tion with ab initio molecular dynamics. The latter is per-
formed using Atom-centered Density-Matrix Propagation
(ADMP) [31,58] and Born–Oppenheimer molecular dynam-
ics [27,28,30]. The wave-packet dynamics is performed
through an analytic, banded, Toeplitz1 approximation to the
discretized free propagator [26,59–63]. We have thus at-
tempted an important synergy between formally accurate ap-
proaches in quantum scattering theory [1,5,6,9,10,12,22,
23,36–38,61,64] and approximate ab initio molecular dynam-
ics methods [27–31,44,46,58,65–69] to achieve efficient
quantum dynamics of large systems. Some features of our
approach include: (a) accurate treatment of the electronic
degrees of freedom by including hybrid density function-
als (for example B3LYP), (b) formally exact and efficient
quantum propagation where the numerical description of the
wave-packet adapts to the shape and position of the same
to provide a flexible propagation scheme, (c) efficient treat-
ment of large systems based on established linear scaling
electronic structure techniques [70–72] and linear scaling
quantum dynamical propagation with respect to grid basis
size [55], and (d) established QM/MM generalization [57]
for treatment of large systems. One notable feature of our
approach is that all important quantum dynamical effects
including zero-point effects, tunneling as well as over-bar-
rier reflections are accurately treated.

The paper is organized as follows: In Sect. 2 we highlight
the salient features of our theoretical formalism. This leads to
a discussion of quantum wave-packet dynamics in Sect. 2.1
and the ADMP approach to dynamics of electrons and clas-
sical nuclei in Sect. 2.2. Approaches related to our formalism
are reviewed in each section. Computational aspects of the
methodology, including enhancement of efficiency, are dis-
cussed in Sect. 2.3. Section 3 deals with a discussion of the
numerical results on a prototypical [38] system of important
in condensed phase proton transfer as well as in weak acid-
base chemistry [73]. In Sect. 4 we present some future goals
and highlights for the methodology.

2 Wave-packet generalization for the atom-centered
density-matrix propagation (ADMP)
and Born–Oppenheimer dynamics schemes

To formulate an efficient dynamical methodology for large
chemically reactive systems, we recognize that one may, in
general, partition the full system based on chemical com-
plexity. For example, some nuclei in chemical systems may
require only classical treatment. Yet other parts of the sys-
tem, including electrons or nuclei with relatively large de
Broglie wavelengths, may need to be treated by applying
full quantum dynamics or approximations to the same. If we
assume that these individual parts of the full system interact

1 The (i, j)-th element of a Toeplitz matrix depends only on |i − j |.
This property of the free propagator used in the current contribution
yields an efficient scheme where only the first (banded) row of the
matrix representation of the time-evolution operator needs to be stored.

with each other in an average sense then we may employ a
TDSCF-like [47,74,75] partitioning scheme where the full
electron-nuclear system is divided into three parts: the first
portion comprises a subsystem to be treated using quantum
dynamics and the position variables for the particles in this
part are denoted byRQM in the discussion below. The second
subsystem comprises most of the nuclear degrees of freedom
and will eventually be treated within a classical framework
(note that some nuclei may be included in the first part treated
with quantum dynamics). The position variables for these
particles are denoted by RC . The third portion comprises the
electrons in the system. Based on the time-dependent Self-
consistent field technique [47,74–76] we can now reduce the
full electron-nuclear time-dependent Schrödinger equation
into three separate equations one describing each subsystem:

ıh̄
∂

∂t
χ(RQM; t) = H1χ(RQM; t) (1)

ıh̄
∂

∂t
φ(RC; t) = H2φ(RC; t) (2)

ıh̄
∂

∂t
ψ(r; t) = H3ψ(r; t) (3)

where H1 is the average (or effective) Hamiltonian of system
1 and is written as 〈φψ |H|φψ〉 where H is the full elec-
tron-nuclear Hamiltonian. H2 and H3 are similarly defined.
It must be noted that Eqs. (1), (2) and (3) are obtained by
writing the full wavefunction �(r, R; t) ≡ χφψ exp

[
ıγ
]
,

where dγ /dt is proportional to twice the energy of the sys-
tem. System 1 is to be treated quantum-dynamically. Since
system 2 comprises nuclei that are not required to be treated
within a quantum dynamical formalism, we may enforce the
classical limit (h̄ → 0) for these particles [67,77–87]. In
system 3, which comprises electrons, we may enforce the
space–time separation to obtain a stationary state description
of electrons. In this fashion one recovers a formalism where a
portion of the full system is treated using quantum dynamics,
another portion of the system is treated classically, while a
third portion (the electrons) is described within a stationary
state approximation. In absence of system 2, the partitioning
scheme described here reduces to the adiabatic approxima-
tion of electrons and nuclei which has been the cornerstone
for many time-dependent as well as time-independent meth-
ods in quantum scattering theory [1].

An alternative approach is to treat the dynamics of sys-
tems 2 and 3 by employing “on-the-fly” AIMD techniques.
Our implementation involves the recently developed ADMP
formalism [31,58,65–69]. Here, the electronic structure is
represented by a single particle electronic density matrix and
is propagated simultaneously with the classical nuclei, with a
simple adjustment of the relative nuclear and electronic time
scales. The simultaneous dynamics is achieved within an ex-
tended Lagrangian formalism [29,31,50,51,58]. It has been
shown that this dynamical strategy leads to a trajectory that
oscillates about the Born–Oppenheimer surface with con-
trollable deviations [58,66] and the results agree well with
Born–Oppenheimer dynamics calculations [65,69]. ADMP
has also been shown to be computationally superior to
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Born–Oppenheimer dynamics, and this is on account of the
relaxation of SCF convergence requirement in ADMP [65,
55,68,69]. The corresponding equations for the systems 2
and 3 are

M
d2RC

dt2
= −

〈

χ

∣
∣∣
∣∣
∂E
({RC,PC} , RQM

)

∂RC

∣∣
∣∣
∣
PC

∣∣
∣∣
∣
χ

〉

(4)

and

µ1/2 d2PC
dt2

µ1/2 = −
〈

χ

∣
∣∣
∣∣
∂E
({RC,PC} , RQM

)

∂PC

∣∣
∣∣
∣
RC

∣∣
∣
∣∣
χ

〉

− [�PC + PC� − �] . (5)

Here M denotes the classical nuclear masses in system 2 and
µ denotes a fictitious mass tensor or inertia tensor describing
the effective electronic degrees of freedom. � is a Lagrang-
ian multiplier matrix used to impose N-representability of the
single particle density matrix, PC . It is to be noted that Eq. (5)
is classical in form, but not in content. Equations (4) and (5)
are obtained by enforcing constraints of N-representability on
the density matrix; the extended Lagrangian thus obtained:

L = 1

2
T r(ṘT

CMṘC)+ 1

2
T r

([
µ1/4ṖCµ1/4

]2
)

− 〈χ ∣∣∂E ({RC,PC} , RQM
)∣∣χ
〉

−T r[�(PCPC − PC)], (6)

however, differs from that found in the standard time-
dependent variational principle [47,48] and is hence a fic-
titious Lagrangian. In Eq. (6), ṘC and ṖC are the nuclear
and density matrix velocities. Further discussion on the asso-
ciated fictitious dynamics of the electrons can be found in
Section 2.2 with more details in Refs. [58,66].

Equation (1) retains its original form and is given explic-
itly as:

ıh̄
∂

∂t
χ(RQM; t)

= H1χ(RQM; t)

≡
[
− h̄2

2MQM
∇2
RQM

+ E
({RC,PC} , RQM

)]
χ(RQM; t) (7)

The energy functional, E
({RC,PC} , RQM

)
, in Eqs. (4), (5)

and (7), depends on the quantum particle coordinates, RQM,
the surrounding classical nuclear coordinates, RC and single
particle electronic density matrix, PC , written in an ortho-
normal basis. The energy, E

({RC,PC} , RQM
)
, may be a

density functional that involves exact exchange [88], a pure
functional [89] (with gradient corrections [90] or higher or-
der corrections [91–93]) or may be based on other single
particle formalisms such as Hartree–Fock or semiempirical
treatments. The energy in ADMP is written using McWeeny
purification [94] for the density matrix, P̃C = 3P2

C − 2P3
C :

E = T r[hP̃C + 1

2
G(P̃C)P̃C] + Exc + VNN. (8)

Here, h is the one-electron matrix and G(P̃C) is the Cou-
lomb potential for DFT and the two-electron matrix for Har-
tree–Fock calculations. Exc is the DFT exchange-correlation

functional (for Hartree–Fock Exc = 0) and VNN represents
the nuclear repulsion energy.

The formalism discussed here constitutes a quantum-clas-
sical partition scheme where a portion of the full system (sub-
system RQM) is treated using full quantum dynamics while
a different portion of the system (subsystem RC) is treated
using classical mechanics. The dynamics of the electrons,
represented using the single particle density matrix PC , is
either treated in a constrained classical-like fashion (Eq. (5))
or within the Born–Oppenheimer approximation. Quantum
classical methods, however, have been known since the incep-
tion of quantum mechanics itself. For example, the first rela-
tionship between quantum and classical variables is due to
Ehrenfest [95] who showed that the equation of motion for
the average values of quantum observables coincides with
the corresponding classical expression. The ideas of Made-
lung [78], de Broglie [79–82] and Bohm [83] exposed the
fact that classical mechanics rigorously follows from quan-
tum mechanics in the limit as h̄ → 0. This aspect has been
used by Gindensperger et al. [86] and Prezhdo et al. [87] to
develop innovative quantum-classical schemes. A classical
limit to quantum mechanics can also be obtained by con-
sidering the disentanglement [96,97] of classical trajectories
based on the Wigner phase space representation [98] of quan-
tum mechanics.

In the subsections that follow we describe the different
components of our methodology, namely, quantum dynam-
ics in Sect. 2.1 and ab initio dynamics in Sect. 2.2. In Fig. 1
we present an illustration of the dynamics obtained using this
methodology for a simple Cl−H+Cl− system. The chloride
ions are treated classically within the framework of AIMD
while the shared proton is simultaneously treated using quan-
tum dynamics. The electrons are treated using B3LYP density
functional. On the left panel three separate potential energy
surfaces are shown. These are potential energy surfaces that
the quantum proton experiences at different instances dur-
ing the dynamics. These potentials are different, since the
chloride atoms are allowed to move according to ab ini-
tio dynamics. The three panels to the right have the appro-
priate potentials with corresponding wave-packet densities
superimposed below. Hence, the quantum proton moves on
an instantaneous surface created by the (moving) chloride
atoms. The classical dynamics of the chloride ions is affected
by the quantum proton and the electrons in the system. As
can be seen the potential experienced by the quantum wave-
packet can be very different at various instances in the dynam-
ics process. For example, the potential here changes from a
double well to single well and then back to a shallow double
well. Furthermore, the wave-packet can split (or bifurcate)
and this is the result of the exact quantum propagation to
be discussed in Sect. 2.1. Figure 1 is shown to illustrate the
dynamic nature of the interactions.

2.1 Quantum wave-packet propagation

In Refs. [55–57] the quantum-dynamical propagation is
approximated using a kinetic reference symmetric split oper-
ator approach [5,99]:
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Fig. 1 A brief illustration of the quantum wave-packet ab initio dynamics methodology for the Cl−H+ system. The proton is treated using quantum
dynamics and the chloride atoms and electrons follow ab initio dynamics. See text for details

exp

{
− ıH t

h̄

}
= exp

{
− ıV t

2h̄

}
exp

{
− ıKt

h̄

}
exp

{
− ıV t

2h̄

}

+O (t3) (9)

where K is the kinetic energy operator of Eq. (7) and the
V is the (local) potential energy operator. Operator splitting
is a well-known concept in numerical solutions to partial
differential equations where expressions similar to Eq. (9)
are known as the Strang and Lie formulae [100]. In quan-
tum mechanics these expressions are due to Trotter [5,99]
and Nelson [101]. Equation (9) has the attractive feature that
it provides dynamics strictly obeying time-reversal symme-
try [5,99] provided the approximations used for the separate
components of Eq. (9) are unitary. There exists a number of
ways to proceed from this point. The important step is to rec-
ognize that for local potentials, the potential energy operator
is diagonal in the coordinate representation. The free-propa-
gator, exp

{− ıKt
h̄

}
may be approximated in a number of ways.

One approach is to recognize that this operator is diagonal
in the momentum representation. Hence, fast Fourier trans-
forms are commonly employed [5,8,16–19] to obtain the
result of the free-propagator operating on a wave-packet in
the coordinate representation. A few alternative approaches
include: (a) the use of direct [22] or iterative, Lanczos [7]
based diagonalization of the full Hamiltonian and the sub-
sequent representation of the evolution operator exp

{− ıH t
h̄

}

using the eigenstates, (b) the use of Chebychev polynomial
approximations [6,11,20–22,102] (which are based on the
Jacobi–Anger formula [103]), (c) use of eigenstates of vari-
ous components of the Hamiltonian operator [104], and (d)
the use of Feynman path integration [12–14,105,109]. The
list here is not exhaustive and a detailed discussion on the
topic may be found in Refs. [1,32]. In all cases, the Hamilto-
nian needs to be approximated in some representation. In the
coordinate representation this is generally achieved with the
discrete-variable representations (DVR) [23–25] or distrib-
uted approximating functionals (DAF) [59,60,63,110–112].

In our approach we employ an analytic banded distrib-
uted approximating functional (DAF) [59,61] representation
for the coordinate space version of the free-propagator:

〈
RQM

∣∣∣∣exp

{
− ıK�tQM

h̄

}∣∣∣∣R
′
QM

〉

DAF

= 1

σ(0)
exp

{

−
(
RQM − R′

QM

)2

2σ(�tQM)
2

}

×
M/2∑

n=0

(
σ(0)

σ (�tQM)

)2n+1(−1

4

)n 1

n!
(2π)−1/2

×H2n

(
RQM − R′

QM√
2σ(�tQM)

)

, (10)

where
{
σ(�tQM)

}2 = σ(0)2 + ı�tQMh̄

MQM
(11)

and H2n(x) are the (complex) Hermite polynomials of even
order. Equation (10) uses the well-known analytical expres-
sion for free evolution of a gaussian function [105],

exp

{
− ıK�tQM

h̄

}
exp

[
− x2

2σ(0)2

]

= σ(0)

σ
(
�tQM

) exp

[

− x2

2σ
(
�tQM

)2

]

(12)

along with the fact that the Hermite functions are generated
from gaussians according to

Hn(x) exp

[
− x2

2σ 2

]
= (−1)n

dn

dxn
exp

[
− x2

2σ 2

]
. (13)

Since the derivative operators dn

dxn commute with the free-
propagator, the Hermite functions can be used as a basis to
expand the exact quantum free propagator with coefficients
as described in Eq. (10) [59]. This yields an efficient propa-
gation scheme to perform quantum dynamics and Feynman
path integration [105,106] through the action of a banded,
sparse, Toeplitz matrix on a vector.

To understand the rationale behind the choice in Eq. (12)
we provide a simplified derivation of this expression. Expand-
ing the wave-packet at time t = 0 using a local set of sym-
metric fitting functions, a(x − xi), we have

χ (x; t = 0) =
∑

i

�xia(x − xi)χ(xi; t = 0) (14)

where �xi is the grid spacing (not in general uniform). The
functions a(x − xi) are local fitting functions the choice of
which may in general depend upon the point xi . One of the
most common directions at this point is to assume that a(x−
xi) ≡ δ(x − xi) ≡ 〈x|xi〉 is a suitable approximation to the
Dirac delta function. Subsequent resolution of the identity
in terms of some complete set of basis functions leads to
a representation of the wave-packet in that basis. The DAF
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approximation differs from these approaches by assuming
that a suitable local representation [59,113] can be directly
constructed for a(x − xi):

a(x − xi) ≡ aN(x − xi; σ)

=
N∑

n

bnHn

(
(x − xi)√

2σ

)
exp

[
− (x − xi)

2

2σ 2

]
.

(15)

Note that Eq. (15) is quite different from what will be obtained
by using a standard basis set approximation for a(x − xi)
wherein the appropriate expression would be

a(x − xi) ≡ δ(x − xi)

=
∑

n

exp
[−x2/2

]
Hn(x)Hn(xi)

× exp
[−x2

i /2
]

(16)

Note that Eq. (16) is separable in x and xi whereas Eq. (15)
only depends on (x − xi). The local spectral [114] form in
Eq. (15) has many computational advantages not the least of
which is the fact that the approximation to a propagator based
on Eq. (15) yields a banded matrix at any level of approxi-
mation. The choice of Hermite functions here is by no means
a requirement; it is however a convenient choice based on
Eqs. (12) and (13). Using the orthogonality of the Hermite
functions and the fact that a(x− xi)must be symmetric with
respect to interchange of x and xi (since it approximates the
Dirac delta function), one obtains

b2n+1 = 0

b2n = 1
σ
√

2π

(− 1
4

)n 1
n!

(17)

where we have used the identity [115]
∫

dx exp
[−x2

]
Hn (x)Hm (x) ≡ δn,m2mm!

√
π (18)

The free propagation of the wave-packet is then given by:

χ (x; t) = exp

{
− ıKt

h̄

}
χ(x; t = 0)

= exp

{
− ıKt

h̄

}∑

i

�xia(x − xi)χ(xi; t = 0)

= exp

{
− ıKt

h̄

}∑

i

�xi

{
∑

n

b2nH2n

(
x − xi√

2σ

)

× exp

[
− (x − xi)

2

2σ 2

]}
χ(xi; t = 0)

=
∑

i

�xi

{
∑

n

b2n
σ (0)

σ
(
�tQM

)

× H2n

(
x − xi√

2σ
(
�tQM

)

)

exp

[

− (x − xi)
2

2σ
(
�tQM

)2

]}

×χ(xi; t = 0), (19)

where we have used the fact that K acts only in x and have
chosen σ ≡ σ(0). Using Eq. (17), we recover the expression

in Eq. (10) as a suitable approximation for the discretized
quantum propagator. There exists similarities between Eq.
(10) and the wavelet theory of multi-resolution analysis and
these have been discussed in detail elsewhere [69,112,114].
This is due to the differences between Eqs. (15) and (16).

As a consequence of the above discussion, it follows that

χ
(
RiQM; t +�t

) = �x

σ(0)

∑

j

exp





−
(
RiQM − R

j

QM

)2

2σ(�tQM)
2






×
M/2∑

n=0

(
σ(0)

σ (�tQM)

)2n+1

×
(−1

4

)n 1

n!
(2π)−1/2

×H2n

(
RiQM − R

j

QM√
2σ(�tQM)

)

χ
(
R
j

QM; t
)
,

(20)

where �x is assumed uniform in this case and the propa-
gation is expressed for a one-dimension system. Generaliza-
tion to higher dimensions is straightforward and is carried
out by writing the propagator in direct product form with
components as in Eq. (10). The variables M and σ(0) deter-
mine the accuracy and width (or computational efficiency)
respectively of the DAF. It has been shown [55,59,63] that
these parameters are not independent and for a given value
of M there exists a σ(0) that provides optimal accuracy for
the propagation. The accuracy of this method in conjunction
with ab initio dynamics has been benchmarked in Ref. [55].

We finally note that the method presented here differs
from other approaches that use Hermite functions to represent
the wavepacket [41,116] based on Heller’s Gaussian wave-
packet formalism [36]. Within these formalisms [41,116] a
locally harmonic approximation to the potential [36] allows
the reduction of the time-dependent Schrödinger equation
to classical-like equations to propagate the width and center
of the Gaussian wavepackets. In our case, no assumption is
made on the nature of the potential and Hermite functions
are used as part of the simplification resulting from Eqs. (12)
and (13). In this sense the approach discussed here has con-
nections to Feynman path integrals; indeed Eq. (10) may be
considered as a Feynman path integral written in Hermite
function representation.

2.1.1 A few comments on the DAF-wave-packet
propagation scheme

It is worth noting a few characteristics of Eq. (10). For an
approximation controlled by choice of parameters M and
σ(0), Eq. (10) only depends on the quantity

(
RQM − R′

QM

)
,

that is distance between points in the coordinate representa-
tion, and goes to zero as this quantity becomes numerically
large due to the Gaussian prefactor. This yields a banded
matrix approximation to Eq. (10), for any M and σ(0). Fur-
thermore, on account of its dependence on

(
RQM − R′

QM

)
,
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a matrix representation of Eq. (10) has the property that all
diagonal elements of this matrix are equal; similarly all nth
super (and sub) diagonal elements are the same. Such a matrix
is called a Toeplitz matrix. The dependence on

(
RQM − R′

QM

)

also implies a translational symmetry reminiscent of wavelet
theories [117–120]. Hence, Eq. (10) provides great simplicity
in computation of quantum propagation within our scheme
and is expected to be useful for large systems. For example,
it is only necessary to store the first row of such a matrix,
in each dimension, to obtain the result of a propagation. The
computational scaling of the quantum propagation described
in Eq. (20) is

{
(2W + 1)(N −W)−W 2

}
, where N is the

number of grid points used in the discretization scheme and
(2W + 1) is the width of the propagator in the coordinate
representation. Since W does not depend on N (W in fact
depends on M and σ(0), that is the required accuracy of
propagation), this scaling goes as O(N) for large grids.

The envelope of the DAF-propagator is proportional to
the time-step [55], when the order of the approximation (deter-
mined by the choice of M and σ(0)) is maintained. This
is particularly interesting since our approach allows for an
adaptive control of quantum timesteps, based on energy con-
servation, and in such cases when the timestep is increased
more points in the vicinity of χ(x) contribute to its prop-
agation. Further the momentum space form of the DAF-
propagator is a polynomial multiplied by a coherent state,

exp
{
− k2σ(�tQM)

2

4

}
≡ exp

{
− k2

4

(
σ(0)2 + ı�tQMh̄/MQM

)}
.

The plane wave frequency in the coherent state is time-step
dependent which implies that for larger time steps but fixed
M and σ(0) the plane-wave portion of the Fourier transform
of Eq. (10) becomes oscillatory for a given k. This is par-
ticularly interesting since coherent states have been used to
propagate quantum systems [121–124], but in our case the
propagator in the momentum representation is a coherent
state multiplied by a polynomial.

2.2 Ab Initio dynamics using ADMP
and Born–Oppenheimer dynamics

Equations (4) and (5), can be derived using the classical sta-
tionary conditions of action [125] on an extended Lagrangian,
Eq. (6), that differs from that used in standard ADMP [31,58,
65–69]. The resultant equations of motion, (4) and (5), are
propagated using the velocity Verlet algorithm:

Pi+1
C = PiC + ṖiC�t −

�t2

2
µ−1/2

× [F i
PC + �iPiC + PiC�i − �i

]
µ−1/2, (21)

Ṗi+1
C = ṖiC − �t

2
µ−1/2

[{F i
PC +�iPiC + PiC�i −�i

}

+ {F i+1
PC +�i+1Pi+1

C + Pi+1
C �i+1 −�i+1

}]
µ−1/2,

(22)

with

F i
PC =

〈

χ

∣
∣∣
∣∣
∂E
({RC,PC} , RQM

)

∂PC

∣∣
∣∣
∣
RC

∣∣
∣∣
∣
χ

〉

. (23)

Similarly, the nuclei are propagated according to

Ri+1
C = Ri

C + Ṙi
C�t −

�t2

2
M−1/2F i

RC
M−1/2, (24)

Ṙi+1
C = Ṙi

C − �t

2
M−1/2

[F i
RC

+ F i+1
RC

]
M−1/2, (25)

where

F i
RC

=
〈

χ

∣
∣∣
∣∣
∂E
({RC,PC} , RQM

)

∂RC

∣∣
∣∣
∣
PC

∣
∣∣
∣∣
χ

〉

. (26)

The velocity Verlet algorithm is obtained from a third-order
Trotter factorization of the classical Liouvillian and com-
prises a propagation scheme that preserves the Poincare inte-
gral invariants [125] of classical mechanics. This kind of
a factorization retains consistency between the classical and
quantum subsystem, since the symmetric split operator
scheme for quantum propagation, i.e., Eq. (9), is also a third-
order Trotter factorization of the quantum time-evolution
operator.

If Born–Oppenheimer dynamics is to be used instead
of ADMP, Eq. (5) is replaced by SCF convergence of PC .
The nuclear propagation equation remains the same in both
formalisms. However, the nuclear forces are different since
ADMP nuclear forces are more general than the standard
Born–Oppenheimer dynamics nuclear forces [31,66] and the
difference between these is proportional to the commutator of
the Fock and density matrices [66] that is generally small in
Born–Oppenheimer dynamics (when the SCF convergence
threshold is tight) but may not be small in ADMP. Similarly,
the density matrix gradient in Eq. (5) and (23) are also pro-
portional to the commutator of the Fock and density matrix
[31].

2.2.1 A few comments on ADMP

While our approach [55] maintains the flexibility to allow
both extended Lagrangian as well as Born–Oppenheimer
propagation of electrons, we must note that current imple-
mentation of the ADMP approach is computationally supe-
rior to Born–Oppenheimer dynamics [65] while retaining
similar accuracy for appropriate choice of µ. This impor-
tant advantage is critical in obtaining a practically viable
scheme to perform electron-nuclear [56] as described here.
The computational differences between Born–Oppenheimer
and ADMP dynamics have discussed in detail in Refs. [55,
65].

The ADMP Eq. (5) is similar to that used in the Car–
Parrinello (CP) scheme however, differs in using the single
particle density matrix in an orthonormal basis set formed
from Gaussian basis functions. In this sense Eq. (5) repre-
sents fictitious dynamics (like CP), where the density matrix
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is propagated instead of being converged. The accuracy and
efficiency of ADMP is controlled by the choice of µ. Hence
one must be aware of the limits on this quantity. Two criteria
[58,66] have been derived to place bounds on the choice of
the fictitious mass. Firstly, the choice of the fictitious mass
determines the magnitude of the commutator [PC,F] thus
determining the extent of deviation from the Born–Oppen-
heimer surface: [66]

‖[F,PC]‖F ≥ 1
∥∥[PC, ṖC

]∥∥
F

∣
∣∣T r

[
ṖCµ1/2P̈Cµ1/2

]∣∣
∣ (27)

where ‖[. . . ]‖F is the Frobenius norm [126,127] of the com-

mutator and is defined as ‖A‖F =
√∑

i,j Ai,j
2. ṖC and P̈C

are velocity and acceleration of the density matrix and can be
determined on the fly as outlined in the propagation scheme
described below. Secondly, the rate of change of the fictitious
kinetic energy,

dHf ict

dt
= T r

[
ṖCµ1/2P̈Cµ1/2

]

= −T r
[

ṖC

(
∂E(R,P)
∂P

∣∣∣∣
R

+�P + P�−�

)]
,

(28)

is required to be bounded and oscillatory and this again is
determined by the choice of fictitious mass tensor. Note that
the numerator in Eq. (27) is the same as the expression in Eq.
(28) and hence this implies that the rate of change of the ficti-
tious kinetic energy inADMP is also proportional to the com-
mutator [PC,F] and hence determines deviations from the
Born–Oppenheimer surface. One must monitor the quantities
in Eqs. (27) and (28) to ascertain that theADMP portion of the
dynamics is physically consistent. In addition we require that
the fictitious mass be chosen so that the density oscillations
are an order of magnitude higher than the highest frequency
nuclear motions [65] In allADMP applications studied to date
[31,58,65,68,128–130] these conditions are satisfied thus
yielding a computationally efficient and accurate approach
to model dynamics on the Born–Oppenheimer surface. It has
been shown thatADMP trajectories thus obtained are in good
agreement with dynamics on the Born–Oppenheimer sur-
face [65,69]. Several interesting problems [65,68,69,128,
129] have been studied using ADMP; perhaps the most nota-
ble among these include (a) a recent demonstration [128] that
dynamical effects are critical in obtaining good infrared spec-
troscopic properties of flexible systems in agreement with
experiment, (b) the prediction of the “amphiphilic” nature of
the hydrated proton [128–130] in water clusters.

2.3 Computational details

The algorithm to perform the simultaneous dynamics of the
{RC,PC, χ} system is described as follows: First a grid is cre-
ated around the particle to be treated quantum dynamically.
This grid represents the discretization of the wave-packet,
χ , in the coordinate representation. If ADMP dynamics is

chosen, the potential energy E
({RC,PC} , RQM

)
, the nu-

clear forces,
∂E({RC,PC },RQM)

∂RC

∣∣
∣
PC

and density matrix forces,

∂E({RC,PC },RQM)
∂PC

∣
∣
∣
RC

, are calculated on the grid points. On the

contrary if Born–Oppenheimer dynamics is the chosen ap-
proach, then the potential energy and only classical nuclear
forces are obtained based on SCF convergence. This is an
important difference and clearly indicates the lower compu-
tational effort required in ADMP.

The potential energy on the grid along with the free prop-
agator in Eq. (10) are then used for causal propagation of
the quantum wave-packet. The energy gradients on the grid
points are used along with the wave-packet to construct the
force on the ADMP system as required by Eqs. (23) and
(26), which propagates the ADMP variables: {RC,PC} and
the associated velocities

{
ṘC, ṖC

}
, as allowed by Eqs. (21),

(22), (24) and (25). Only the nuclear degrees of freedom are
propagated for the Born–Oppenheimer case. This process is
then repeated for the next propagation step.

The above algorithm is limited by the size of the quantum
grid and to facilitate maximum compactness two procedures
are currently implemented: (a) we use an adaptive grid pro-
cedure wherein new grid positions are recalculated every few
timesteps based on the center and instantaneous distribution
of the wave-packet. The wave-packet amplitudes at the new
grid positions are calculated with an accurate grid interpola-
tion scheme [110,60,131–133] to transform the wave-packet
from old set of grid points to a new set. This way the quan-
tum grid adapts to the region where the quantum wave-packet
has significant contributions. (b) It is also important to note
that the size of the quantum grid is closely related to the
computationally expensive portion of the algorithm since it
determines the number of energy and force evaluations to be
performed as per Eqs. (8), (26) and (23). These computations
are performed on the quantum grid points and used for ab
initio dynamics. This necessitates a reduction of the number
of grid points where such calculations are performed, with-
out serious loss in accuracy. We have implemented a novel
importance sampling approach that allows reduction of the
number of grid points by nearly a factor of 10 per dimen-
sion [56] of quantum propagation. The sampling algorithm
involves the determination of the importance level of a certain
grid point based on the potential, grid projected gradient of
potential and wave-packet density at the grid point [56]. This
when coupled with subsequent interpolation yields a pro-
cedure that is robust, efficient, accurate and works “on-the-
fly” to compress, instantaneously, the number of grid points
requiring quantum-chemical calculations. The approach is
seen to have many important advantages for use in propa-
gation of multiple quantum particles in full dimensionality,
which will be subject of future studies.

Another important factor in the quantum propagation
scheme is related to the nature of the discretized DAF-prop-
agator in Eq. (20). Equation (20) may be interpreted as a

matrix–vector multiplication where the
(
RiQM, R

j

QM

)
th ele-

ment of the propagator matrix acts on the initial vector to
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create a new vector. In this case, we note that for points near
the edges of the grid defined by [i ≤ W ] and [N − i ≤ W ],
where RiQM ≡ i�x, N is the number of grid discretization
points and (2W+1) is the width of the DAF-propagator in the
coordinate representation, there is an error in the discretiza-

tion scheme in Eq. (20) since
〈
RiQM

∣∣
∣exp

{
− ıK�tQM

h̄

}∣∣
∣RjQM

〉

DAF
is nonzero for [i ≤ W ] and j < 0. That is, the DAF-prop-
agator extends beyond the region of definition of the grid.
However, the size of this extended region is proportional to
W�x. One of the properties of the DAF-propagator is that
its band width,W , is independent of the grid size�x as long
as the values of σ(0) and M are kept constant [133]. Hence,
as �x is made smaller, the total number of grid points, N ,
increases and the ratioW/N (∝ �x) gets smaller. Hence, as
the grid spacing is reduced, the size of the extended region de-
scribed above gets smaller and in the continuous limit, i.e., as
�x becomes infinitesimally small, this region, W/N ∝ �x,
becomes infinitesimally small. For finite size grid spacings
the numerical effects of this problem at grid boundaries is
reduced by using Neumann boundary conditions [134] along
with a symmetry-adapted version of the propagator. By con-
trast the current implementation uses Dirichlet-type bound-
ary conditions.

3 Scattering amplitudes, quantum/classical correlated
motion and evaluation of density functionals for proton
transfer problems

An exhaustive study of the accuracy and efficiency of the
dynamical methodology, including evaluation of the DAF
parameters and comparisons between ADMP and
Born–Oppenheimer wave-packet implementations have been
carried out in Ref. [55]. Furthermore, performance of the ap-
proach with regards to quantum zero point effects, tunneling
and over-barrier reflection has been fully evaluated [55]. It
must be noted that most methodologies that study quantum
dynamics in large systems do not adequately reproduce all
three effects. While many methods accurately reproduce the
zero-point effects, few are able to reproduce both tunneling
and over-barrier reflection accurately. It is also worthwhile
to note that standard semiclassical approximations (such as
WKB [77]) break down in the vicinity of barrier height,
which provides an initiative for a full quantum treatment.
Our scheme was found [55] to accurately reproduce all three
quantum dynamical effects described above. The scaling of
errors in our algorithm is found to be proportional to O (�t3)
and this comes as no surprise on account of the third order
Trotter factorization used in Eq. (9) and is implicit in the
velocity Verlet equations (21), (22), (24) and (25). This how-
ever also proves that there are no additional spurious errors
in our approach.

To illustrate the scalability of our approach with system
size, we briefly describe here the proton transfer in a phenol-
trimethylamine (see Fig. 2). This system has been consid-
ered prototypical for condensed phase proton transfer [38].
In addition, similar systems have been recently studied to

Fig. 2 The phenol-amine system. The shared proton, the oxygen of the
phenol and the nitrogen in the amine are marked. The shared proton
is studied using wave-packet dynamics and the rest of the system is
treated using ADMP

understand the quantum nuclear effects involved in the slow
deprotonation step of weak acid-base chemistry [73]. These
studies [73], however, use Marcus’ theory [135] to obtain
quantum corrections to the proton transfer process. We dem-
onstrate the power of our approach in contributing signifi-
cantly to such studies by treating the electronic effects
accurately within hybrid DFT; in addition full quantum
dynamical effects of the hopping proton are accurately treated
within the wave-packet formalism. As outlined previously,
these quantum effects may include zero-point effects, tunnel-
ing as well as over-barrier reflection. Our approach is capable
of handling all three effects.

Phenol-trimethylamine is a classic case where the loss of
the proton from the phenol is coupled to the delocalization of
electrons in the ring. The electronic structure is thus treated
using both B3LYP and BLYP density functionals as a dem-
onstration. From our study we obtain the change in scattering
matrix elements (for the proton transfer) with respect to ini-
tial wave-packet energy for both B3LYP and BLYP treatment
of electronic degrees of freedom. We also study the effect of
the phenol ring on the dynamics of the quantum proton.

In Fig. 3a we provide the wave-packet survival time in the
reactant channel, 〈χ0| χ(t)〉 and its half Fourier transform:
∫ ∞

0
dt exp {ıEt/h̄} 〈χ0| χ(t)〉 ≡ lim

ε→0

〈
χ0

∣∣∣∣
−ıh̄

E −H + ıε

∣∣∣∣χ0

〉

= 〈
χ0

∣∣G+(E)
∣∣χ0
〉
. (29)

is provided in Fig. 3b. The operator G+(E) ≡ [limε→0 −ıh̄
(E −H + ıε)−1

]
is the causal Green’s function. It has been

shown [12,61] that such a half Fourier transform is directly
proportional to the scattering matrix element obtained from
the S-matrix Kohn variational principle [64]. Figures 3a and
3b reveal marked differences between S-matrix element ob-
tained from B3LYP and BLYP functionals, especially for
intermediate scattering energies. For example, the S-matrix
element at an energy of approximately 2,000 cm−1 is three
times as much for BLYP as it is for B3LYP. Important differ-
ences are also seen in the survival time in the intermediate
time region. In this region of intermediate time, the proton
is partially bound to both phenol and amine and in such
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Fig. 3 The quantity 〈χ0| χ(t)〉 as a function of simulation time in (a) determines the survival of the wave-packet in the reactant channel. The
half-Fourier transform of 〈χ0| χ(t)〉 in (b) is directly proportional to the scattering matrix elements obtained from S-matrix Kohn variational
principle [61]. The insert in (b) indicates the behavior for low scattering energies. In Fig. (c) we present the time-evolution of a C–C bond length
during this simulation. As can be seen there is a correlation between this bond length and the oscillations in wave-packet evolution. See text
for details. In Fig. (d) we present the correlation function from Eq. (30) along with frequencies obtained from a single point optimized BLYP
calculation.

situations B3LYP and BLYP have been previously noted
[68,129] to provide significantly different results. (See Refs.
[68,129] where B3LYP and BLYP provide different hopping
rates for proton translocation across a water wire in a Gram-
icidin A ion channel and in medium sized protonated water
clusters.) From our treatment, we see that these differences in
the intermediate time region lead directly to a discrepancy in
the S-matrix obtained from the two functionals. Dynamical
quantities such as transition probabilities and scattering ma-
trix elements could, thus, be substantially different between
the hybrid B3LYP and pure BLYP functionals when nuclear
quantization is fully exploited. Thus accurate treatment of the
surrounding electrons could be critical when treating proton
transfer problems.

In Fig. 3c we also present the evolution of one of the
carbon–carbon bond distances in the phenol system. The
time-period of these oscillations is about 20 fs. Upon closer
inspection of the the evolution of the quantity 〈χ0| χ(t)〉 in
Fig. 3a it is seen that this quantity also displays a period
of approximately 20 fs at the beginning. (The oscillations
are close to being out of phase by a factor of π .) This indi-
cates a correlated motion between the carbon–carbon bond
and the quantized proton and can be rationalized based on
the fluctuations in the electrostatic interaction between the π
electrons of the phenol and the quantized proton as a result
of the breathing mode. It is clear that such an examination is

possible using the current methodology on account of rigor-
ous quantum dynamical treatment in conjunction with accu-
rate electronic structure. Future studies will include solvent
effects through QM/MM generalization of the procedure de-
scribed here.

To obtain the vibrational density of states from dynamics,
the Fourier transform of the velocity–velocity autocorrelation
is commonly used since it approximates the vibrational den-
sity of states. This aspect has been widely used in classical
dynamics [136] as well as ab initio molecular dynamics [128].
In our case, the existence of classical as well as quantum-
dynamically treated nuclei complicates the application of this
concept. To study the effect of quantum dynamical treatment
of the shared proton on the vibrational density of states, we
have constructed the Fourier transform of the unified veloc-
ity–velocity, flux–flux autocorrelation function (FT-VFAC)
[56]

C(ω) =
∫ +∞

−∞
exp [−ıωt] {〈v(t)v(0)〉C + 〈J(t)J(0)〉Q

}

(30)

where the average flux, J(t), of the quantum wavepacket is

J(t) = 〈J 〉 = R
[〈
ψ(t)

∣∣∣∣
−ıh̄
2m

∇
∣∣∣∣ψ(t)

〉]
. (31)
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R [A] represents the real part of the complex numberA. The
symbols 〈· · · 〉C and 〈· · · 〉Q in Eq. (30) represent the classi-
cal and quantum variables ensemble averages. Here, we have
exploited the connection between the probability flux and
velocity and, in fact, the probability flux is the quantum cor-
respondence to the velocity as is clear from the appearance
of the momentum operator, [−ıh̄∇], in Eq. (31). Equation
(31), however, represents an “average-flux” for the quantum
system. Our results are presented in Fig. 3(d) where opti-
mized single point frequencies are also shown. While the
latter includes only the harmonic frequency corresponding
to a single optimized geometry, the spectrum obtained from
Eq. (30) includes quantum as well as classical dynamical
effects through the evolution of the quantum proton in paral-
lel with the classical evolution of the other nuclei and ADMP
dynamics of the electrons.

4 Future goals and generalizations

We have discussed a recently developed approach to perform
efficient quantum dynamics of electronic and nuclear degrees
of freedom. The salient features of the method include for-
mally exact, accurate and efficient quantum dynamics using
an analytic banded representation for the free propagator and
efficient electronic dynamics using ADMP or Born–Oppen-
heimer dynamics. The quantum dynamics is performed using
an analytic banded distributed approximating functional rep-
resentation for the discretized free propagator and adaptive,
interpolative grids are used to render an efficient implemen-
tation of wave-packet dynamics. One critical computational
bottleneck in this approach involves the evaluation of the
potential and forces on the discretized quantum grid. This is
an important bottleneck in the current algorithm and is over-
come using adaptive grids in conjunction with an importance
sampling algorithm [56] that involves targeted potential sam-
pling based on the local curvature, gradient information and
wave-packet density. The result is used with multi-dimen-
sional splines [56] to enhance the computational efficiency.
While the quantum dynamics is currently performed using a
third order Trotter factorization, the effect of other schemes
will be studied in future publications. The electronic structure
is treated accurately using hybrid or gradient corrected den-
sity functionals. State-of-the-art, higher order density func-
tionals [91–93] can be easily included in the current scheme
and such effects will be investigated as part of future studies.
Furthermore, QM/MM generalization has also been recently
demonstrated [57] and this should allow the treatment of large
biological systems. Hence we envision that this approach will
be useful to study quantum dynamics in large systems.

Many future methodological generalizations are planned.
One area involves the calculation of infrared spectra of small
clusters by including quantum dynamical effects of subsys-
tems. Most current approaches dealing with large systems
involve quantum corrections to classical dynamical correla-
tion functions; the quantum corrections generally being ob-
tained from within the harmonic approximation [137–139].

In the current formalism full quantum description of a por-
tion of the system can be used in constructing a wave-packet
averaged dipole correlation function, the Fourier transform
of which would relate to the experimentally measured IR
spectrum. This approach can generalized to obtain other cor-
relation functions as well. One bottleneck that we foresee in
these calculations involves the matter of time scales; gener-
ally longer time-scale simulations are necessary to converge a
dipole correlation function. This can be easily overcome for
ADMP dynamics. This is because the only portions of the
Fock matrix and gradients that need to be recomputed be-
tween grid points involve the one-electron term and this can
be done easily. (The case for Born–Oppenheimer dynamics
is more complicated and will require more work before we
can achieve long-term dynamics.) Preliminary results to this
effect have already been provided in this contribution.

A second area of study involves the extension of the quan-
tum wavepacket AIMD to treat extended condensed phase
systems.This kind of methodological generalization is impor-
tant in many areas of chemical physics, for example, proton
transport in polymer electrolyte membrane fuel cells [140–
143], considered in hydrogen fuel cell applications. There
will be two components to the methodological generalization
that we will accomplish. Firstly, the quantum free-evolution
operator in Eq. (10) will be modified to allow quantum evo-
lution in an infinite system. This will be achieved through
a periodic generalization of quantum propagation scheme
through the use of a symmetry adapted form of the DAF-
quantum propagator that will allow k-space integration. The
second component of method development involved is the
modification of AIMD to operate within periodic boundary
conditions including k-space integration. If Born–Oppenhei-
mer dynamics is to be employed then the classical nuclear
forces are essentially the same as those derived previously
[144] for periodic electronic structure calculations. However,
if ADMP is to be employed then each k-point has a different
density matrix that needs to be idempotent and propagated
using equations similar to Eq. (5). The density matrices are
only coupled by the energy expression.

Another area of computational improvement involves the
treatment of multiple quantum nuclei in full dimensionality
in conjunction with electronic dynamics as treated here. We
believe this problem will be alleviated to some extent based
on recent developments involving importance sampling [56].
Modified Neuman boundary conditions are also being used
to achieve greater accuracy during wave-packet dynamics.
QM/MM generalizations to the current approach are also
underway.

The steps indicated above will lead to more efficient
wave-packet dynamics schemes on a single potential energy
surface. We are also currently working on generalizations
to multiple electronic surfaces. These will involve two steps:
(a) coupled ADMP dynamics of single particle density matri-
ces leading to instantaneous approximations to the multiple
electronic surfaces, and (b) quantum wave-packet dynamics
on these coupled set of surfaces. These features will lead to
many interesting studies in future.
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